-
- FALK KURT
- Mathematical Institute, University of Bern
-
- STRATMANN BERND O.
- Mathematical Institute, University of St Andrews
この論文をさがす
説明
In this paper we study normal subgroups of Kleinian groups as well as discrepancy groups (d-groups), that are Kleinian groups for which the exponent of convergence is strictly less than the Hausdorff dimension of the limit set. We show that the limit set of a d-group always contains a range of fractal subsets, each containing the set of radial limit points and having Hausdorff dimension strictly less than the Hausdorff dimension of the whole limit set. We then consider normal subgroups $G$ of an arbitrary non-elementary Kleinian group $H$, and show that the exponent of convergence of $G$ is bounded from below by half of the exponent of convergene of $H$. Finally, we give a discussion of various examples of d-groups.
収録刊行物
-
- Tohoku Mathematical Journal, Second Series
-
Tohoku Mathematical Journal, Second Series 56 (4), 571-582, 2004
東北大学大学院理学研究科数学専攻
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282680092720768
-
- NII論文ID
- 110001043910
-
- NII書誌ID
- AA00863953
-
- ISSN
- 2186585X
- 00408735
-
- MRID
- 2097162
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可