MAXIMAL SLICES IN ANTI-DE SITTER SPACES

  • LI ZHENYANG
    Key Laboratory of Pure, and Applied mathematics, School of Mathematics Science, Peking University
  • SHI YUGUANG
    Key Laboratory of Pure, and Applied mathematics, School of Mathematics Science, Peking University

この論文をさがす

説明

We prove the existence of maximal slices in anti-de Sitter spaces (ADS spaces) with small boundary data at spatial infinity. The main argument is carried out by implicit function theorem. We also get a necessary and sufficient condition for the boundary behavior of totally geodesic slices in ADS spaces. Moreover, we show that any isometric and maximal embedding of hyperbolic spaces into ADS spaces must be totally geodesic. Combined with this, we see that most of maximal slices obtained in this paper are not isometric to hyperbolic spaces, which implies that the Bernstein Theorem in ADS space fails.

収録刊行物

参考文献 (12)*注記

もっと見る

詳細情報 詳細情報について

  • CRID
    1390282680095785600
  • NII論文ID
    130001073234
  • DOI
    10.2748/tmj/1215442874
  • ISSN
    2186585X
    00408735
  • MRID
    2428863
  • 本文言語コード
    en
  • データソース種別
    • JaLC
    • Crossref
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ