書誌事項
- タイトル別名
-
- Reinforcement Learning with Autonomous Segmentation for Continuous State and Action Spaces
- レンゾク ナ ジョウタイ コウドウ クウカン ノ ジリツテキ ブンカツ キコウ オ モツ キョウカ ガクシュウホウ
この論文をさがす
説明
One of major research topics for behavior-based AI is to construct an appropriate sensor-motor, relation for an autonomous moving robot in an embedded environment, hopefully, with less preliminary setting by an autonomous robot designer. This paper proposes a new reinforcement learning algorithm, which is called the Continuous Space Classifier Generator (CSCG), for this problem. The major attraction of CSCG is that the state space and the action space of a learning agent are segmented simultaneously with the process of its behavior rule acquisition in the embedded environment. This means that a robot designer can be released from the segmentation of those two spaces, which is often crucial to the success of reinforcement learning. After showing the detail of CSCG, not only computer simulations but also experiments using a small real robot are conducted in order to illustrate the learning process of the proposed method.
収録刊行物
-
- システム制御情報学会論文誌
-
システム制御情報学会論文誌 15 (9), 477-485, 2002
一般社団法人 システム制御情報学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390282680143294208
-
- NII論文ID
- 10009678723
-
- NII書誌ID
- AN1013280X
-
- ISSN
- 2185811X
- 13425668
-
- NDL書誌ID
- 6274503
-
- データソース種別
-
- JaLC
- NDL
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可