Selective Deposition of Lipid Membranes on Locally Anodic-Oxidized Silicon Surface

  • Nakamura Masaya
    Graduate School of Engineering, Yokohama National University, Japan
  • Isono Toshinari
    Graduate School of Engineering, Yokohama National University, Japan
  • Ogino Toshio
    Graduate School of Engineering, Yokohama National University, Japan

説明

We demonstrate control of biomolecule adsorption on Si oxide islands formed by local anodic oxidation using atomic force microscopy. Local anodic oxidation was performed on a thin-SiO2/Si substrate covered with an octadecyltrimethoxysilane (OTMS) film. Dipalmitoylphosphatidylcholine (DPPC) molecules were deposited on the oxide islands. Hydrophilicity of the oxide island surfaces decreased with an increase in the applied voltage. When high voltages were applied, the oxide islands laterally expanded to form round shape and more hydrophilic oxide areas formed in the periphery of the islands. Density of OH groups on the anodic oxide island surface, which determines the surface hydrophilicity, is changed by the applied voltage during the oxidation. Since lipid membrane formation is strongly affected by surface hydrophilicity, selective deposition of DPPC membranes was achieved. We concluded that local anodic oxidation is a useful method for controlling biomolecule adsorption through oxide surfaces with variable hydrophilicity. [DOI: 10.1380/ejssnt.2011.357]

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (31)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ