Inner Product Space Based on Fuzzy Neighborhoods for Text Data Analysis
-
- KAWASAKI Yuichi
- University of Tsukuba
-
- MIYAMOTO Sadaaki
- University of Tsukuba
Bibliographic Information
- Other Title
-
- ファジィ近傍に基づく内積空間とカーネル法によるテキストデータ解析
- ファジィ キンボウ ニ モトズク ナイ セキ クウカン ト カーネルホウ ニ ヨル テキストデータ カイセキ
Search this article
Description
A fuzzy neighborhood model to analyze text data is proposed. This method can represent a sequencial structure in a set of texts, while traditional methods like the vector space model cannot as it simply counts the number of words in a text. Moreover fuzzy neighborhood model is a generalization of the vector space model and fuzzy equivalence relations. An advantage of this model is that it provides a positive definite kernel for data analysis. Accordingly we apply the present model to text analysis using kernel c-means clustering and kernel principal component analysis. Two examples of analysis of newspaper articles and medical incident reports are shown.
Journal
-
- Journal of Japan Society for Fuzzy Theory and Intelligent Informatics
-
Journal of Japan Society for Fuzzy Theory and Intelligent Informatics 21 (4), 461-469, 2009
Japan Society for Fuzzy Theory and Intelligent Informatics
- Tweet
Details 詳細情報について
-
- CRID
- 1390282680164461056
-
- NII Article ID
- 10025994797
-
- NII Book ID
- AA1181479X
-
- ISSN
- 18817203
- 13477986
-
- NDL BIB ID
- 10405989
-
- Text Lang
- ja
-
- Article Type
- journal article
-
- Data Source
-
- JaLC
- NDL Search
- Crossref
- CiNii Articles
- KAKEN
-
- Abstract License Flag
- Disallowed