Combination Treatment with Ionising Radiation and Gefitinib (Iressa', ZD1839), an Epidermal Growth Factor Receptor (EGFR) Inhibitor, Significantly Inhibits Bladder Cancer Cell Growth in vitro and in vivo

  • COLQUHOUN AJ
    Department of Cancer Studies and Molecular Medicine, Clinical Sciences Unit, Leicester General Hospital
  • MCHUGH LA
    Department of Cancer Studies and Molecular Medicine, Clinical Sciences Unit, Leicester General Hospital
  • TULCHINSKY E.
    Department of Cancer Studies and Molecular Medicine, Clinical Sciences Unit, Leicester General Hospital
  • KRIAJEVSKA M.
    Department of Cancer Studies and Molecular Medicine, Clinical Sciences Unit, Leicester General Hospital
  • MELLON JK
    Department of Cancer Studies and Molecular Medicine, Clinical Sciences Unit, Leicester General Hospital

この論文をさがす

抄録

Purpose: External beam radiotherapy (EBRT) is the principal bladder-preserving monotherapy for muscle-invasive bladder cancer. Seventy percent of muscle-invasive bladder cancers express epidermal growth factor receptor (EGFR), which is associated with poor prognosis. Ionising radiation (IR) stimulates EGFR causing activation of cytoprotective signalling cascades and thus may be an underlying cause of radioresistance in bladder tumours.<br> Materials and methods: We assessed the ability of IR to activate EGFR in bladder cancer cells and the effect of the anti-EGFR therapy, gefitinib on potential radiation-induced activation. Subsequently we assessed the effect of IR on signalling pathways downstream of EGFR. Finally we assessed the activity of gefitinib as a monotherapy, and in combination with IR, using clonogenic assay in vitro, and a murine model in vivo.<br> Results: IR activated EGFR and gefitinib partially inhibited this activation. Radiation-induced activation of EGFR activated the MAPK and Akt pathways. Gefitinib partially inhibited activation of the MAPK pathway but not the Akt pathway. Treatment with combined gefitinib and IR significantly inhibited bladder cancer cell colony formation more than treatment with gefitinib alone (p = 0.001-0.03). J82 xenograft tumours treated with combined gefitinib and IR showed significantly greater growth inhibition than tumours treated with IR alone (p = 0.04).<br> Conclusions: Combining gefitinib and IR results in significantly greater inhibition of invasive bladder cancer cell colony formation in vitro and significantly greater tumour growth inhibition in vivo. Given the high frequency of EGFR expression by bladder tumours and the low toxicity of gefitinib there is justification to translate this work into a clinical trial.<br>

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (30)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ