-
- Zhang Xue-Shan
- DEPARTMENT OF MATHEMATICS XIAN UNIVERSITY OF ARCHITECTURE AND TECHNOLOGY
この論文をさがす
説明
Let Mm be a compact submanifold of a simply connected space form Nn(c) with c{≥}0. Denote by s and H the square length of the second fundamental form and the mean curvature vector field of M respectively. By introducing a selfadjoint linear operator QA associated with the shape operator of M, we show that there are no stable currents in M and topologically, M is a sphere if s<H2/(m−1). For an immersed submanifold of the ellipsoid we show that appropriate assumption on QA implies the vanishing of a given homology group.
収録刊行物
-
- KODAI MATHEMATICAL JOURNAL
-
KODAI MATHEMATICAL JOURNAL 17 (2), 262-272, 1994
国立大学法人 東京科学大学理学院数学系
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390282680249873920
-
- NII論文ID
- 130003574181
-
- ISSN
- 18815472
- 03865991
-
- MRID
- 1282215
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可