Hamiltonian Monte Carlo with explicit, reversible, and volume-preserving adaptive step size control
-
- Okudo Michiko
- Graduate School of Information Science and Technology, the University of Tokyo
-
- Suzuki Hideyuki
- Graduate School of Information Science and Technology, Osaka University
この論文をさがす
説明
<p> Hamiltonian Monte Carlo is a Markov chain Monte Carlo method that uses Hamiltonian dynamics to efficiently produce distant samples. It employs geometric numerical integration to simulate Hamiltonian dynamics, which is a key of its high performance. We present a Hamiltonian Monte Carlo method with adaptive step size control to further enhance the efficiency. We propose a new explicit, reversible, and volume-preserving integration method to adaptively set the step sizes, which does not violate the detailed balance condition or require a large increase in computational time. </p>
収録刊行物
-
- JSIAM Letters
-
JSIAM Letters 9 (0), 33-36, 2017
一般社団法人 日本応用数理学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282680278608640
-
- NII論文ID
- 130006900383
-
- ISSN
- 18830617
- 18830609
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可