- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Spectral Geometry of Graph Theory
-
- Urakawa Hajime
- 東北大学大学院情報科学研究科
Bibliographic Information
- Other Title
-
- スペクトル幾何学とグラフ理論
- スペクトル キカガク ト グラフ リロン
Search this article
Description
A brief survey on the spectral geometry of a finite or infinite graph is given. After the adjacency matrix, discrete Laplacian and discrete Green's formula are introduced, the spectral geometry of finite graphs, particularly, estimation of the first positive eigenvalue in terms of the Cheeger constant, examples of isospectral or cospectral graphs and the Faber=Krahn type inequality are discussed. For infinite graphs, spectrum of the discrete Laplacian, the heat kernel and Green kernel are estimated. Finally, a relation between the finite element method for the Dirichlet boundary eigenvalue problem and the eigenvalue problem of the adjacency matrix for a graph is given.
Journal
-
- Bulletin of the Japan Society for Industrial and Applied Mathematics
-
Bulletin of the Japan Society for Industrial and Applied Mathematics 12 (1), 29-45, 2002
The Japan Society for Industrial and Applied Mathematics
- Tweet
Details 詳細情報について
-
- CRID
- 1390282680742632320
-
- NII Article ID
- 110007390945
-
- NII Book ID
- AN10288886
-
- ISSN
- 09172270
- 24321982
-
- HANDLE
- 10097/46883
-
- NDL BIB ID
- 6105603
-
- Text Lang
- ja
-
- Article Type
- journal article
-
- Data Source
-
- JaLC
- IRDB
- NDL Search
- CiNii Articles
-
- Abstract License Flag
- Disallowed