Hamiltonian Formalism in Pattern Formation Problems in Dissipative Systems
-
- Kuwamura Masataka
- 広島大学理学部数学科:広島大学大学院理学研究科:広島商船高等専門学校:和歌山大学システム工学部:(現)神戸大学発達科学部
Bibliographic Information
- Other Title
-
- 散逸系のパターン形成問題に現れるハミルトン形式
- サンイツケイ ノ パターン ケイセイ モンダイ ニ アラワレル ハミルトン ケイシキ
Search this article
Description
It is well known that the Hamiltonian formalism plays a central role in classical mechanics. In this article, we introduce the notion of gradient/skew-gradient structure which enables us to apply the Hamiltonian formalism for studying pattern formation problems in dissipative systems. We explain usefulness of the gradient/skew-gradient structure through the linear stability analysis of standing pulse solutions and spatially periodic stationary patterns in reaction-diffusion equations, which are typical subjects of pattern formation theory in disspative systems.
Journal
-
- Bulletin of the Japan Society for Industrial and Applied Mathematics
-
Bulletin of the Japan Society for Industrial and Applied Mathematics 16 (1), 17-26, 2006
The Japan Society for Industrial and Applied Mathematics
- Tweet
Details 詳細情報について
-
- CRID
- 1390282680743713536
-
- NII Article ID
- 110004706589
-
- NII Book ID
- AN10288886
-
- ISSN
- 09172270
- 24321982
-
- NDL BIB ID
- 7907392
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL Search
- CiNii Articles
-
- Abstract License Flag
- Disallowed