Conservative Finite Difference Schemes for the Degasperis-Procesi Equation(Theory)
-
- Miyatake Yuto
- Graduate School of Information Science and Technology, The University of Tokyo
-
- Matsuo Takayasu
- Graduate School of Information Science and Technology, The University of Tokyo
Bibliographic Information
- Other Title
-
- Degasperis-Procesi方程式に対する保存則を保つ差分スキーム(理論)
- Degasperis-Procesi方程式に対する保存則を保つ差分スキーム
- Degasperis Procesi ホウテイシキ ニ タイスル ホゾンソク オ タモツ サブン スキーム
Search this article
Description
We consider the Degasperis-Procesi equation, which was recently introduced as a completely integrable shallow water equation. We propose nonlinear and linear finite difference schemes for the equation based on an extended version of the discrete variational derivative method, and show that they preserve two associated invariants at a same time. We also prove the unique solvability of the schemes, and evaluate the schemes numerically.
Journal
-
- Transactions of the Japan Society for Industrial and Applied Mathematics
-
Transactions of the Japan Society for Industrial and Applied Mathematics 20 (4), 219-239, 2010
The Japan Society for Industrial and Applied Mathematics
- Tweet
Details 詳細情報について
-
- CRID
- 1390282680744104320
-
- NII Article ID
- 110008007209
-
- NII Book ID
- AN10367166
-
- ISSN
- 09172246
- 24240982
-
- NDL BIB ID
- 10937141
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL
- CiNii Articles
-
- Abstract License Flag
- Disallowed