Subspace iteration by the residual vectors for the eigenvalue problem Aχ=λχ
-
- Katayama Takuro
- Sasebo Heavy Industries Co., Ltd.
-
- Kiyota Shyuji
- Sasebo Heavy Industries Co., Ltd.
-
- Kashiwagi Mitsuhiro
- Kyushu Tokai University
-
- Ohwaki Shin-ichi
- Kumamoto University
-
- Hirai Itio
- Kumamoto University
Bibliographic Information
- Other Title
-
- 残差ベクトルを用いた標準固有値問題の部分空間解法
Search this article
Description
This paper proposes an iterative method of finding only a few lower eigenvalues and the corresponding eigenvectors for the eigenproblem Ax=λx. The convergence of the proposed method, using the orthogonality between approximate eigenvectors and their residual vectors, is based on the Rayleigh-Ritz method and the inverse power method. The method computes the best approximation of eigenvectors in the subpace, spanned by approximate eigenvectors and linear transformations of their residual vectors, and improves approximate eigenvectors by increasing the number of basic vectors in the subspace iteratively.
Journal
-
- Transactions of the Japan Society for Industrial and Applied Mathematics
-
Transactions of the Japan Society for Industrial and Applied Mathematics 4 (4), 299-325, 1994
The Japan Society for Industrial and Applied Mathematics
- Tweet
Details 詳細情報について
-
- CRID
- 1390282680744848128
-
- NII Article ID
- 110001883590
-
- NII Book ID
- AN10367166
-
- ISSN
- 24240982
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- CiNii Articles
-
- Abstract License Flag
- Disallowed