書誌事項
- タイトル別名
-
- 226 A Bispectrum Feature Extracting and LVQ Neural Network Based Structure Damage Detection Method
説明
The subject of structure defective diagnosis is an active research area in nondestructive testing (NDT). In this paper, a new structure damage detecting approach is proposed based on the combination of the bispectrum feature extracting method and the Learning Vector Quantization (LVQ) identification method. Since that bispectrum analysis possesses the capability of Gaussian noise restraining, so it is available to be employed to enhance the performance of feature extracting. In simulation, by using the method proposed, it has shown that relatively very higher accuracy of structure damage identification can be obtained comparing with the MAC (formed from the Model parameters) method, especially in case of low signal to noise ratio environment.
収録刊行物
-
- 最適化シンポジウム講演論文集
-
最適化シンポジウム講演論文集 2000.4 (0), 343-348, 2000
一般社団法人 日本機械学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282680916603008
-
- NII論文ID
- 110002486453
-
- ISSN
- 24243019
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可