Rab GTPases Networks in Membrane Traffic in <i>Saccharomyces cerevisiae</i>

  • Nagano Makoto
    Research Center for RNA Science, RIST, Tokyo University of Science
  • Y. Toshima Junko
    Research Center for RNA Science, RIST, Tokyo University of Science Faculty of Science and Engineering, Waseda University
  • Toshima Jiro
    Research Center for RNA Science, RIST, Tokyo University of Science Department of Biological Science and Technology, Tokyo University of Science

Bibliographic Information

Other Title
  • 出芽酵母のメンブレントラフィックにおけるRab GTPaseネットワーク
  • シュツガ コウボ ノ メンブレントラフィック ニ オケル Rab GTPase ネットワーク

Search this article

Description

  Intracellular membrane trafficking between membranous compartments is essential for organelle biogenesis, structure, and identity. Rab/Ypt GTPases are well-characterized regulators of intracellular membrane trafficking, functioning as molecular switches that alternate between GTP- and GDP-bound forms. In Saccharomyces cerevisiae, 11 Rab/Ypt GTPases have been identified and their functions are known to be conserved in their mammalian counterparts. In yeast, the secretory pathway is regulated by sequential activation and inactivation (the so-called Rab cascade) of three types of yeast Rab protein -Ypt1p, Ypt31p/32p and Sec4p -via specific guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In addition to these Rabs, we and others have recently demonstrated that Ypt6p is predominantly localized to the early Golgi compartment, and functions as another regulator of anterograde transport for intra-Golgi trafficking in the secretory pathway. On the other hand, the endocytic pathway is known to be regulated by three yeast Rab5s (Vps21p, Ypt52p and Ypt53p) and one Rab7 (Ypt7p). Rab5 and Rab7 are key determinants of endosome identity, and the Rab5-Rab7 cascade is important for the progression from early to late endosome. Our recent study demonstrates that the endocytic pathway branches into two vacuolar targeting pathways, the Rab5-dependent vacuole protein sorting (VPS) pathway and the Rab5-independent pathway. In this review, we focus on recent advances in our understanding of molecular mechanisms that regulate the localization and activity of yeast Rab GTPases in intracellular membrane trafficking.<br>

Journal

  • YAKUGAKU ZASSHI

    YAKUGAKU ZASSHI 135 (3), 483-492, 2015-03-01

    The Pharmaceutical Society of Japan

References(55)*help

See more

Details 詳細情報について

Report a problem

Back to top