Predation Efficacy of Bdellovibrio bacteriovorus on Multidrug-Resistant Clinical Pathogens and Their Corresponding Biofilms

  • Sun Yao
    Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University
  • Ye Jianzhong
    State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University
  • Hou Yuanbo
    School of Laboratory Medicine and Life Science, Wenzhou Medical University
  • Chen Huale
    Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University
  • Cao Jianming
    School of Laboratory Medicine and Life Science, Wenzhou Medical University
  • Zhou Tieli
    Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University

書誌事項

タイトル別名
  • Predation Efficacy of <i>Bdellovibrio bacteriovorus</i> on Multidrug-Resistant Clinical Pathogens and Their Corresponding Biofilms

この論文をさがす

抄録

<p>The aim of the present study was to evaluate the predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant (MDR) or extensive drug resistant (XDR) gram-negative pathogens and their corresponding biofilms. In this study, we examined the ability of B. bacteriovorus to prey on MDR and XDR gram-negative clinical bacteria, including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Results showed that B. bacteriovorus was able to prey on all planktonic cultures, among which the most efficient predation was observed for drug-resistant E. coli, with a 3.11 log10 reduction in viability. Furthermore, B. bacteriovorus demonstrated promising efficacy in preventing biofilm formation and dispersing the established biofilm. Reductions in biofilm formation of E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii co-cultured with B. bacteriovorus were 65.2%, 37.1%, 44.7%, and 36.8%, respectively. Meanwhile, the established biofilms of E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii were significantly reduced by 83.4%, 81.8%, 83.1%, and 79.9%, respectively. A visual analysis supported by scanning electron microscopy demonstrated the role of B. bacteriovorus in removing the established biofilms. This study highlights the potential use of B. bacteriovorus as a biological control agent with the capability to prey on MDR/XDR gram-negative pathogens and eradicate biofilms.</p>

収録刊行物

参考文献 (24)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ