Numerical Investigation on Optimum Body Shape in Low Reynolds Number Flow : Drag Minimization and Lift Maximization by Topology Optimization(Fluids Engineering)

Bibliographic Information

Other Title
  • 低レイノルズ数流れにおける最適物体形状の探索 : トポロジー最適化法による抗力最小化と揚力最大化(流体工学,流体機械)
  • 低レイノルズ数流れにおける最適物体形状の探索--トポロジー最適化法による抗力最小化と揚力最大化
  • テイレイノルズスウ ナガレ ニ オケル サイテキ ブッタイ ケイジョウ ノ タンサク トポロジー サイテキカホウ ニ ヨル コウリョク サイショウカ ト ヨウリョク サイダイカ

Search this article

Description

In this paper, some new ideas for topology optimization of fluid dynamic problems are presented. An expression for the parameter α_<max> accompanying body force term in fluid equation is proposed, which can be used for relatively wide range of the Reynolds number 0.01<Re<1000. For drag minimization problem, an objective function is expressed as body force integration in flow domain, which differs from usually adopted one, i.e. integral of energy dissipation. Similar expression of objective function for lift maximization problem is also presented. Employing these body force and objective function expressions, optimum shape of two-dimensional cylindrical body was numerically investigated, where minimum drag shape for Re up to 1000 was obtained under constant area constraint, and maximum lift shape for Re=10 under constant area and drag constraints.

Journal

Citations (3)*help

See more

References(24)*help

See more

Details 詳細情報について

Report a problem

Back to top