Effect of water cooling conditions on splash break occurance during aluminum DC casting

  • Morishita Makoto
    Material & Process Research Section, Aluminum Sheets & Coil Research Department, Moka Plant, Kobe Steel, Ltd.
  • Abe Mitsuhiro
    Material & Process Research Section, Aluminum Sheets & Coil Research Department, Moka Plant, Kobe Steel, Ltd.
  • Yoshida Makoto
    Kagami Memorial Research Institute for Materials Science and Technology, Waseda University

Bibliographic Information

Other Title
  • アルミニウムDC鋳造中のスプラッシュ発生に及ぼす水冷条件の影響

Search this article

Description

The cooling water used in vertical aluminum DC casting is generally induced to just under the mold to prevent molten aluminum break out. However, the cooling water leaks into the air gap between the mold and the surface of ingot, so water splashes over the top of the molten aluminum, resulting in uneven cooling. But the quantitative survey on the splash break behavior and the change in the cooling condition has not been conducted. Hence, to quantify the splash break condition and the cooling capability, we have made the “Cooling water simulator” capable of freely controlling the potential splash causing factors such as temperature of cooling water, water flow rate, air gap amount, and angle of the water flow, reproducing the splash, and measuring the heat transfer value. The experimental result reveals that the temperature of cooling water is not a factor highly influencing on heat flux and splash, but the splash behavior highly depends on three factors which are the water flow rate, the angle of water flow, and the distance between the cooling water hit point level and the cooling water exit level. And that the heat flux also increases when splash occurs. In addition, the splash break parameter was drawn based on the above three factors, and the correlation between splash break parameter and heat flux was clarified. Use of splash break parameter enables setting of the casting condition where the maximum heat flux is obtained while preventing splash.

Journal

References(1)*help

See more

Details 詳細情報について

  • CRID
    1390282681316512256
  • NII Article ID
    130004482020
  • DOI
    10.2464/jilm.60.379
  • ISSN
    18808018
    04515994
  • Text Lang
    ja
  • Data Source
    • JaLC
    • Crossref
    • CiNii Articles
  • Abstract License Flag
    Disallowed

Report a problem

Back to top