Bacteriology : Dynamics of Quinolone Resistance in Fecal Escherichia coli of Finishing Pigs after Ciprofloxacin Administration
-
- HUANG Kang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, Sichuan 610064, P. R. China
-
- XU Chang-Wen
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, Sichuan 610064, P. R. China
-
- ZENG Bo
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, Sichuan 610064, P. R. China
-
- XIA Qing-Qing
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, Sichuan 610064, P. R. China
-
- ZHANG An-Yun
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, Sichuan 610064, P. R. China
-
- LEI Chang-Wei
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, Sichuan 610064, P. R. China
-
- GUAN Zhong-Bin
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, Sichuan 610064, P. R. China
-
- CHENG Han
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, Sichuan 610064, P. R. China
-
- WANG Hong-Ning
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, Sichuan 610064, P. R. China
書誌事項
- タイトル別名
-
- Dynamics of Quinolone Resistance in Fecal <i>Escherichia coli</i> of Finishing Pigs after Ciprofloxacin Administration
この論文をさがす
説明
Escherichia coli resistance to quinolones has now become a serious issue in large-scale pig farms of China. It is necessary to study the dynamics of quinolone resistance in fecal Escherichia coli of pigs after antimicrobial administration. Here, we present the hypothesis that the emergence of resistance in pigs requires drug accumulation for 7 days or more. To test this hypothesis, 26 pigs (90 days old, about 30 kg) not fed any antimicrobial after weaning were selected and divided into 2 equal groups: the experimental (EP) group and control (CP) group. Pigs in the EP group were orally treated daily with 5 mg ciprofloxacin/kg of body weight for 30 days, and pigs in the CP group were fed a normal diet. Fresh feces were collected at 16 time points from day 0 to day 61. At each time point, ten E. coli clones were tested for susceptibility to quinolones and mutations of gyrA and parC. The results showed that the minimal inhibitory concentration (MIC) for ciprofloxacin increased 16-fold compared with the initial MIC (0.5 µg/ml) after ciprofloxacin administration for 3 days and decreased 256-fold compared with the initial MIC (0.5 µg/ml) after ciprofloxacin withdrawal for 26 days. GyrA (S83L, D87N/ D87Y) and parC (S80I) substitutions were observed in all quinolone-resistant E. coli (QREC) clones with an MIC ≥8 µg/ml. This study provides scientific theoretical guidance for the rational use of antimicrobials and the control of bacterial resistance.
収録刊行物
-
- The Journal of Veterinary Medical Science
-
The Journal of Veterinary Medical Science 76 (9), 1213-1218, 2014
公益社団法人 日本獣医学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282681406579072
-
- NII論文ID
- 130004693897
-
- NII書誌ID
- AA10796138
-
- COI
- 1:STN:280:DC%2BC2cfhtlWltw%3D%3D
-
- ISSN
- 13477439
- 09167250
-
- NDL書誌ID
- 025818396
-
- PubMed
- 24919413
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- PubMed
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可