The Role of the Disulfide Bridge in the Stability and Structural Integrity of Ovalbumin Evaluated by Site-Directed Mutagenesis

この論文をさがす

抄録

To provide a molecular explanation of the role of the disulfide (SS) bridge in the thermostability and structural integrity of ovalbumin (OVA), we prepared SS-mutated OVAs in which SS-forming residues were replaced by Ala or Ser (C73A, C73S, C120A, and C73/120A), and compared the conformation, thermostability, susceptibility to elastase, and formation of heat-stable OVA (S-OVA) with those of the wild-type. The circular dichroism (CD) and tryptophan fluorescence spectra revealed that the SS-mutated OVAs assumed a native-like conformation similar to the wild-type. The thermal denaturation temperature for the SS-mutated OVAs was significantly lower than that for the wild-type. C73S, C120A, and C73/120A mutants converted to S-OVA on alkaline treatment. Analyses for elastase digestion fragments showed that a non-native SS bridge was generated in all SS-mutated OVAs, but non-native SS-pairing did not contribute to thermostability. Hence, we concluded that the presence of the original SS bridge in OVA contributes to conformational stability but is not directly related to the conversion to S-OVA.

収録刊行物

参考文献 (29)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ