Excitation of Transient Waves by Localized Episodic Heating in the Tropics and Their Propagation into the Middle Atmosphere

Bibliographic Information

Other Title
  • 熱帯に局在した加熱による波動励起と中層大気への伝播
  • Excitation of Transient Waves by Locali

Search this article

Abstract

Response of a resting spherical atmosphere to transient localized heating in the tropics is studied theoretically with linearized primitive equations. The method of separation of variables is used to solve the problem, and time-integrations of the full nonlinear equations are also done to assess the linearity of the response. The linearity of the response is good for some realistic values of the heating. The dominant responses are equatorially-trapped vertically propagating waves whose vertical scale matches that of the heating and global normal (or free) modes. In the middle atmosphere, the equatorially trapped waves respond effectively if the angular frequency is the order of 1O×[damping rate]. If the frequency is greater than this order, the response is suppressed in a stochastic sense; while if the frequency is less than this order, it is suppressed by the damping. Spatial pattern of the response is obtained for a realization of idealized stochastic heating with a Gaussian form in space and time. For the heating, of which the time scale is a few days or longer, horizontal cross sections of the response show the "Gill pattern" at the beginning and then the response disperses zonally in low latitudes. For short-lived heating, on the other hand, the gravity wave response expands concentrically at the beginning and then the response spreads zonally in low latitudes. Energy and momentum spectra to various kinds of wave are calculated for the stochastic heating. As the time scale of the heating events decreases, gravity-wave responses increase relatively to Rossby-wave responses. As the zonal scale of the heating events decreases, on the other hand, Rossby-wave responses slightly increase relatively to the gravity-wave responses. Heating just on the equator is less effective to excite Rossby waves than that off the equator. Energy and momentum of these vertically propagating waves are of comparable orders to those of the real atmosphere if the heating has an appropriate spectrum with a realistic amount comparable to the total latent heat release in the tropics; and so does the energy of global normal modes. Wave energy propagation into the middle atmosphere has to be taken into account even for the calculation of the transient response in the troposphere if the dominant frequency is larger than the damping rate.

Journal

Citations (7)*help

See more

References(59)*help

See more

Details 詳細情報について

Report a problem

Back to top