Tribochemical wearing in S-C mylonites and its implication to lithosphere stress level

Search this article

Abstract

A new approach for revealing the brittle origin of C-surfaces as localized high shear strain zones in S-C mylonites (mylonites with C-surfaces cutting through a mylonitic S-foliation) is presented. A compiled worldwide catalog of width (W) and displacement (D) data for shear zones indicates that ductile mylonites show a constant W/D ratio of 10-0.3 and ratios of brittle ‘cataclasites’ vary in magnitude from 10-1 to 10-3, implying that the ratio is a diagnosis for discriminating ductile and brittle shear zones. A newly measured W-D data of shear displaced minerals along C-surfaces in granitic S-C mylonites from the Hatagawa shear zone in northeast Japan is added on the worldwide W-D catalog, being plotted on a brittle origin with the high W/D ratio of 10-1.5. Using this result and a tribochemical wear theory which accounts for wear formation under hydrothermal conditions, C-surfaces in the S-C mylonite might have been formed by cataclastic deformation under the lithosphere stress level of ca. 300 MPa at temperature of 400°C with water for granite. This result suggests a high lithosphere stress level at the depth of the S-C mylonite formation where deformation is predominantly plastic.

Journal

  • Earth, Planets and Space

    Earth, Planets and Space 54 (11), 1103-1108, 2002

    Society of Geomagnetism and Earth, Planetary and Space Sciences, The Seismological Society of Japan, The Volcanological Society of Japan , The Geodetic Society of Japan , The Japanese Society for Planetary Sciences

Citations (2)*help

See more

References(83)*help

See more

Details 詳細情報について

Report a problem

Back to top