STRESS-STRAIN RELATIONSHIPS IN RUBBER (I) PRAGMATIC ELASTIC CONSTANTS OF RUBBER-LIKE MATERIAL

Bibliographic Information

Other Title
  • ゴムの応力とひずみに関する研究 I  ゴム状物質の実用弾性率について
  • ゴムジョウ ブッシツ ノ ジツヨウ ダンセイリツ ニ ツイテ

Search this article

Description

Theoretically the value of elastic constants for isotropic materials can be determined with the knowledge of any two elastic constants, from either of the following equation (1).<br>ν=1/2-E/6B, E=2G(1+ν) (1) when, E: Young′s modulus, E=σ/ε, σ: Stress, ε: Strain, G: Shear modulus, B: Bulk modulus, ν: Poisson′s ratio.<br>The rubber deformation takes place without change in volumes so that obtained equation (2).<br>ν=0.5, E=3G (2)<br>Bartenev shows equation (3) when large deformation of the rubber.<br>σ=E(1-λ-1), λ=1+ε (3)<br>But from (2) and (3) obtained equation (4) σ=3G(1-λ-1) did not fit for experimental data by Treloar stress-strain curve. σ=G(λ-λ-2) also famous equation but the experiment failed of success at tensile side to Treloar data.<br>My idea is defined rubber-like Poisson′s ratio (νR) and rubber-like Young′s modulus (ER), (νR)=ε′/ε =(1-1/√<λ>)/(λ-1), (ER)=2G(1+(νR))…(5), and (ER) relation input Bartenev equation (3), gained σ-λ formula (6), σ=2G(1-λ-1.5).<br>This equation (6) shows very close agreement to the Treloar tensile and compression data in the pragmatic strain region from about 2>λ>0.5.

Journal

  • NIPPON GOMU KYOKAISHI

    NIPPON GOMU KYOKAISHI 56 (6), 358-368, 1983

    THE SOCIRETY OF RUBBER SCIENCE AND TECHNOLOGYY, JAPAN

Details 詳細情報について

Report a problem

Back to top