[Papers] Quantum Efficiency Simulation and Electrical Cross-talk Index Development with Monte-Carlo Simulation Based on Boltzmann Transport Equation

DOI Web Site 参考文献7件 オープンアクセス

説明

<p>This paper explains a new method to model a photodiode for accurate quantum efficiency simulation. Individual photo-generated particles are modeled by Boltzmann transport equation, and simulated by Monte-Carlo method. Good accuracy is confirmed in terms of similarities of quantum efficiency curves, as well as color correction matrices and SNR10s. Three attributes - "initial energy of the electron", "recombination of electrons at the silicon surface" and "impurity scattering" - are tested to examine their effectiveness in the new model. The theoretical difference to the conventional method with drift-diffusion equation is discussed as well. Using the simulation result, the relationship among the cross-talk, potential barrier, and distance from the boundary has been studied to develop a guideline for cross-talk suppression. It is found that a product of the normal distance from the pixel boundary and the electric field perpendicular to the Z-axis needs to be more than 0.02V to suppress the probability of electron leakage to the adjacent pixel to less than 10%.</p>

収録刊行物

参考文献 (7)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ