Combining segmented grey and white matter images improves voxel-based morphometry for the case of dilated lateral ventricle

  • Goto Masami
    School of Allied Health Sciences, Kitasato University
  • Abe Osamu
    Department of Radiology, The University of Tokyo Hospital
  • Aoki Shigeki
    Department of Radiology, Juntendo University School of Medicine
  • Kamagata Koji
    Department of Radiology, Juntendo University School of Medicine
  • Hori Masaaki
    Department of Radiology, Juntendo University School of Medicine
  • Miyati Tosiaki
    Graduate School of Medical Science, Kanazawa University
  • Gomi Tsutomu
    School of Allied Health Sciences, Kitasato University
  • Takeda Tohoru
    School of Allied Health Sciences, Kitasato University

書誌事項

タイトル別名
  • Combining Segmented Grey and White Matter Images Improves Voxel-based Morphometry for the Case of Dilated Lateral Ventricles

この論文をさがす

説明

<p>Purpose: To evaluate the error in segmented tissue images and to show the usefulness of the brain image in voxel-based morphometry (VBM) using Statistical Parametric Mapping (SPM) 12 software and 3D T1-weighted magnetic resonance images (3D-T1WIs) processed to simulate idiopathic normal pressure hydrocephalus (iNPH).</p><p>Materials and Methods: VBM analysis was performed on sagittal 3D-T1WIs obtained in 22 healthy volunteers using a 1.5T MR scanner. Regions of interest for the lateral ventricles of all subjects were carefully outlined on the original 3D-T1WIs, and two types of simulated 3D-T1WI were also prepared (non-dilated 3D-T1WI as normal control and dilated 3D-T1WI to simulate iNPH). All simulated 3D-T1WIs were segmented into gray matter, white matter, and cerebrospinal fluid images, and normalized to standard space. A brain image was made by adding the gray and white matter images. After smoothing with a 6-mm isotropic Gaussian kernel, group comparisons (dilated vs non-dilated) were made for gray and white matter, cerebrospinal fluid, and brain images using a paired t-test.</p><p>Results: In evaluation of tissue volume, estimation error was larger using gray or white matter images than using the brain image, and estimation errors in gray and white matter volume change were found for the brain surface.</p><p>Conclusion: To our knowledge, this is the first VBM study to show the possibility that VBM of gray and white matter volume on the brain surface may be more affected by individual differences in the level of dilation of the lateral ventricles than by individual differences in gray and white matter volumes. We recommend that VBM evaluation in patients with iNPH should be performed using the brain image rather than the gray and white matter images.</p>

収録刊行物

被引用文献 (6)*注記

もっと見る

参考文献 (25)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ