-
- Ito Noboru
- 東京大学大学院数理科学研究科
Bibliographic Information
- Other Title
-
- 結び目で世界はどこまで描けるのか―幾何と物理の交差点―
- 交流 結び目で世界はどこまで描けるのか : 幾何と物理の交差点
- コウリュウ ムスビメ デ セカイ ワ ドコ マデ エガケル ノ カ : キカ ト ブツリ ノ コウサテン
Search this article
Description
<p>Gauss studied knots and links, and introduced a word theory of plane curves. Tait gave a table of knots, and obtained a famous conjecture of knots. After Jones polynomial was appeared and this Tait conjecture was solved, we noticed an importance of studies of knot projections (plane curves). We introduce recent studies. From 1984, Jones polynomial, its generalization (Quantum invariants), and their categorifications have been hot topics in Geometry and Physics. From 2005, by Turaev’s nanoword theory, we can describe which information of a knot produces the Jones polynomial and the Khovanov homology. In this report, we introduce recent works of mathematicians and the author with respect to these topics.</p>
Journal
-
- Butsuri
-
Butsuri 73 (2), 76-84, 2018-02-05
The Physical Society of Japan
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390282763061170304
-
- NII Article ID
- 40021457512
-
- NII Book ID
- AN00196952
-
- ISSN
- 24238872
- 00290181
-
- NDL BIB ID
- 028813189
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL
- CiNii Articles
-
- Abstract License Flag
- Disallowed