書誌事項
- タイトル別名
-
- A Proposal on Feature Analysis for Digging Operation of Excavator by Machine Learning
- キカイ ガクシュウ オ モチイタ ユアツ ショベル ノ クッサク ソウサ ニ オケル トクチョウ ブンセキホウ ノ イチ テイアン
この論文をさがす
説明
<p>In the construction field, the improvement of productivity and the work efficiency are demanded by the introduction of automation and ICT technology for the construction machine. However, it is the fact that the work efficiency and productivity depend on the operator skill of the construction machine in the current construction field. Therefore, the work efficiency will be high in the field with the skilled operator. In this paper, the analysis of feature for the digging operation of an excavator by using a random forest is proposed. A random forest is learned on the basis of skilled work states. The operation difference has been verified by the judgment result of the random forest compared with novice, typical, and professional work states. Moreover, the difference of operations has been considered by state flow models which were made from the judgment result of the random forest.</p>
収録刊行物
-
- システム制御情報学会論文誌
-
システム制御情報学会論文誌 31 (9), 328-335, 2018-09-10
一般社団法人 システム制御情報学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282763076237696
-
- NII論文ID
- 130007531306
-
- NII書誌ID
- AN1013280X
-
- ISSN
- 2185811X
- 13425668
-
- NDL書誌ID
- 029207486
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可