Composite operator and condensate in the SU(N) Yang-Mills theory with U(N-1) stability group

DOI DOI DOI DOI DOI ほか2件をすべて表示 一部だけ表示 被引用文献2件 参考文献47件 オープンアクセス

書誌事項

タイトル別名
  • Composite operator and condensate in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> Yang-Mills theory with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> stability group

この論文をさがす

説明

Recently, a reformulation of the $SU(N)$ Yang-Mills theory inspired by the Cho-Faddeev-Niemi decomposition has been developed in order to understand confinement from the viewpoint of the dual superconductivity. The concept of infrared Abelian dominance plays an important role in the realization of this concept and through numerical simulations on the lattice, evidence was found for example in the form of the dynamical mass generation for certain gluon degrees of freedom. A promising analytical attempt to explain the generation of such masses is through condensates of mass dimension two. In this talk, we want to focus on the reformulated $SU(N)$ Yang-Mills theory in the previously overlooked minimal option with the non-Abelian $U(N-1)$ stability group, in contrast to the famous maximal Abelian gauge, where the decomposition corresponds to the Abelian $U(1)^{N-1}$ stability group. We proceed with a thorough one-loop analysis of this novel decomposition, calculating all standard renormalization group functions at one-loop level in light of the renormalizability of this theory. We subsequently define an appropriate mixed gluon-ghost composite operator of mass dimension two as the candidate for the condensate within this theory and prove its (on-shell) BRST invariance and the multiplicative renormalizability. Finally, the existence of the condensate is discussed within the local composite operator formalism.

Talk given at the XIIIth Quark Confinement and the Hadron Spectrum 2018, Maynooth

収録刊行物

被引用文献 (2)*注記

もっと見る

参考文献 (47)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ