Composite operator and condensate in the SU(N) Yang-Mills theory with U(N-1) stability group
-
- Kondo Kei-Ichi
- Dept. of Phys., Grad. Sch. of Sci., Chiba Univ.:Dept. of Phys., Grad. Sch. of Sci. and Eng., Chiba Univ.
-
- Matsudo Ryutaro
- Dept. of Phys., Grad. Sch. of Sci. and Eng., Chiba Univ.
-
- Nishino Shogo
- Dept. of Phys., Grad. Sch. of Sci., Chiba Univ.
-
- Shinohara Toru
- Dept. of Phys., Grad. Sch. of Sci., Chiba Univ.
-
- Warschinke Matthias
- Dept. of Phys., Grad. Sch. of Sci., Chiba Univ.
書誌事項
- タイトル別名
-
- Composite operator and condensate in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> Yang-Mills theory with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> stability group
この論文をさがす
説明
Recently, a reformulation of the $SU(N)$ Yang-Mills theory inspired by the Cho-Faddeev-Niemi decomposition has been developed in order to understand confinement from the viewpoint of the dual superconductivity. The concept of infrared Abelian dominance plays an important role in the realization of this concept and through numerical simulations on the lattice, evidence was found for example in the form of the dynamical mass generation for certain gluon degrees of freedom. A promising analytical attempt to explain the generation of such masses is through condensates of mass dimension two. In this talk, we want to focus on the reformulated $SU(N)$ Yang-Mills theory in the previously overlooked minimal option with the non-Abelian $U(N-1)$ stability group, in contrast to the famous maximal Abelian gauge, where the decomposition corresponds to the Abelian $U(1)^{N-1}$ stability group. We proceed with a thorough one-loop analysis of this novel decomposition, calculating all standard renormalization group functions at one-loop level in light of the renormalizability of this theory. We subsequently define an appropriate mixed gluon-ghost composite operator of mass dimension two as the candidate for the condensate within this theory and prove its (on-shell) BRST invariance and the multiplicative renormalizability. Finally, the existence of the condensate is discussed within the local composite operator formalism.
Talk given at the XIIIth Quark Confinement and the Hadron Spectrum 2018, Maynooth
収録刊行物
-
- 日本物理学会講演概要集
-
日本物理学会講演概要集 73.1 (0), 31-31, 2018
一般社団法人 日本物理学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282763113869312
-
- NII論文ID
- 130007648210
-
- ISSN
- 21890803
- 24700029
- 24700010
-
- 本文言語コード
- ja
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE