Digital Shape Reconstruction of a Micro-Sized Machining Tool Using Light-Field Microscopy

この論文をさがす

抄録

<p>In this paper, we propose a digital shape reconstruction method for micro-sized 3D (three-dimensional) objects based on the shape from silhouette (SFS) method that reconstructs the shape of a 3D model from silhouette images taken from multiple viewpoints. In the proposed method, images used in the SFS method are depth images acquired with a light-field microscope by digital refocusing (DR) of a stacked image along the axial direction. The DR can generate refocused images from an acquired image by an inverse ray tracing technique using a microlens array. Therefore, this technique provides fast image stacking with different focal planes. Our proposed method can reconstruct micro-sized object models including edges, convex shapes, and concave shapes on the surface of an object such as micro-sized defects so that damaged structures in the objects can be visualized. Firstly, we introduce the SFS method and the light-field microscope for 3D shape reconstruction that is required in the field of micro-sized manufacturing. Secondly, we show the developed experimental equipment for microscopic image acquisition. Depth calibration using a USAF1951 test target is carried out to convert relative value into actual length. Then 3D modeling techniques including image processing are implemented for digital shape reconstruction. Finally, 3D shape reconstruction results of micro-sized machining tools are shown and discussed.</p>

収録刊行物

被引用文献 (4)*注記

もっと見る

参考文献 (8)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ