Theoretical Study of <i>S</i> = 1/2 Frustrate Magnets by Large-scale Simulation of Numerical Diagonalizations

Bibliographic Information

Other Title
  • 大規模数値対角化シミュレーションによる<i>S</i> = 1/2フラストレート磁性体の理論的研究
  • 大規模数値対角化シミュレーションによるS=1/2フラストレート磁性体の理論的研究
  • ダイキボ スウチ タイ カクカ シミュレーション ニ ヨル S=1/2 フラストレート ジセイタイ ノ リロンテキ ケンキュウ

Search this article

Description

<p>We study several cases of the Heisenberg antiferromagnet by large-scale simulation of numerical- diagonalizations based on the Lanczos algorithm. This review paper presents recently obtained results for three cases: the S = 1/2 orthogonal-dimer system, the S = 1/2 kagome-lattice antiferromagnet, and the integer-spin one-dimensional antiferromagnet showing the Haldane gap. Concerning the S = 1/2 orthogonal-dimer system, our numerical-diagonalization results suggest the existence of an unknown boundary that is different from the edge of the exact-dimer phase and the edge of the Néel-ordered phase. The studies for the latter two cases treat extraordinarily large dimensions of the Hamiltonian matrices for the target systems. Calculations for the cases require use of almost all the resources in a modern powerful supercomputer.</p>

Journal

References(18)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top