- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Estimation of Texture-dependent Stress-Strain Curve and <i>r</i>-value of Aluminum Alloy Sheet Using Deep Learning
-
- KOENUMA Kohta
- 東京農工大学 大学院 工学府 機械システム工学専攻
-
- YAMANAKA Akinori
- 東京農工大学 大学院 工学研究院 先端機械システム部門
-
- WATANABE Ikumu
- 物質・材料研究機構構造材料研究センター
-
- KUWABARA Toshihiko
- 東京農工大学 大学院 工学研究院 先端機械システム部門
Bibliographic Information
- Other Title
-
- 深層学習を用いたアルミニウム合金板の集合組織に依存した応力-ひずみ曲線と<i>r</i>値の推定
- 深層学習を用いたアルミニウム合金板の集合組織に依存した応力 : ひずみ曲線とr値の推定
- シンソウ ガクシュウ オ モチイタ アルミニウム ゴウキンバン ノ シュウゴウ ソシキ ニ イソン シタ オウリョク : ヒズミ キョクセン ト rチ ノ スイテイ
- Estimation of Texture-Dependent Stress-Strain Curve and r-Value of Aluminum Alloy Sheet Using Deep Learning
Search this article
Description
<p>Deformation of an aluminum alloy sheet is affected by its underlying crystallographic texture and has been widely studied by the crystal plasticity finite element method (CPFEM). The numerical material test based on the CPFEM allows us to quantitatively estimate the stress-strain curve and the Lankford value (r-value), which depend on the texture of aluminum alloy sheets. However, in the use of the numerical material test as a means of optimizing the texture to design aluminum alloys, the CPFEM is computationally expensive. We propose a methodology for rapidly estimating the stress -strain curve and r-value of aluminum alloy sheets using deep learning with a neural network. We train the neural network with synthetic texture and stress-strain curves calculated by the numerical material test. To capture the features of synthetic texture from a {111} pole figure image, the neural network incorporates a convolution neural network. Using the trained neural network, we can estimate the uniaxial stress-strain curve and the in-plane anisotropy of the r-value for various textures that contain Cube and S components. The results indicate that the neural network trained with the results of the numerical material test is a promising methodology for rapidly estimating the deformation of aluminum alloy sheets.</p>
Journal
-
- Journal of the Japan Society for Technology of Plasticity
-
Journal of the Japan Society for Technology of Plasticity 61 (709), 48-55, 2020
The Japan Society for Technology of Plasticity
- Tweet
Details 詳細情報について
-
- CRID
- 1390283659853912192
-
- NII Article ID
- 130007801669
- 130007942355
-
- NII Book ID
- AN00135062
-
- ISSN
- 18820166
- 13475320
- 00381586
- 13459678
-
- Web Site
- https://mdr.nims.go.jp/pid/8a323b45-aeeb-4558-afa7-4d350fea5c13
- http://id.ndl.go.jp/bib/030282680
- https://ndlsearch.ndl.go.jp/books/R000000004-I030282680
- http://id.ndl.go.jp/bib/030779545
- https://ndlsearch.ndl.go.jp/books/R000000004-I030779545
- https://www.jstage.jst.go.jp/article/sosei/61/709/61_48/_pdf
- https://www.jstage.jst.go.jp/article/matertrans/61/12/61_P-M2020853/_pdf
-
- Text Lang
- ja
-
- Article Type
- journal article
-
- Data Source
-
- JaLC
- IRDB
- NDL Search
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE
-
- Abstract License Flag
- Disallowed