無機半導体中の転位挙動に及ぼす光環境効果の理解に向けたナノスケール力学試験手法の開拓

  • 中村 篤智
    大阪大学大学院基礎工学研究科機能創成専攻 科学技術振興機構
  • 方 旭飛
    大阪大学大学院基礎工学研究科機能創成専攻 ダルムシュタット工科大学材料地球科学科
  • 松原 彩華
    名古屋大学大学院工学研究科物質科学専攻
  • 大島 優
    名古屋大学大学院工学研究科物質科学専攻
  • 松永 克志
    名古屋大学大学院工学研究科物質科学専攻 一般財団法人ファインセラミックスセンターナノ構造研究所

書誌事項

タイトル別名
  • Photoindentation: A Method to Understand Dislocation Behavior of Inorganic Semiconductors in Light at the Nanoscale
  • ムキ ハンドウタイ チュウ ノ テンイ キョドウ ニ オヨボス コウカンキョウ コウカ ノ リカイ ニ ムケタ ナノスケール リキガク シケン シュホウ ノ カイタク

この論文をさがす

説明

<p>The science and technology related with light has revolutionized modern society, and understanding the effects of light on semiconducting materials has become crucial to current science and technology. Although much research has been done on the effects of light on the electronic and optical properties of materials, the effects of light on the mechanical properties of materials are not well understood. It was recently found that extraordinarily large plasticity appears in bulk compression of single-crystal ZnS in complete darkness even at room-temperature. This is believed to be due to the less interactions between dislocations and photo-excited electrons and/or holes. However, methods for evaluating dislocation behavior in such semiconductors with small dimensions under a particular light condition had not been well established. Here we show a new nanoindentation method that incorporates well designed lighting system for exploring dislocation behavior depending on the light conditions in advanced semiconductors. We used single-crystal ZnS as a model material because its bulk deformation behavior has been well investigated. It is confirmed that the decrease of dislocation mobility with light observed in conventional bulk deformation tests can be understood even by the nanoindentation tests at room-temperature. It is remarkable that we experimentally demonstrate that dislocation mobility appears to be more sensitive to light exposure than dislocation nucleation.</p>

収録刊行物

参考文献 (25)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ