- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Commutation properties of the partial isometries associated with anticommuting self-adjoint operators
Description
It is proven that, for every pair {A, B} of anticommuting self-adjoint operators, iAB is essntially self-adjoint on a suitable domain and its closure O(A, B) anticommutes with A and B. For every self-adjoint opearlor S, a partial isometry Us is defined by the polar decomposition S = Us lSI. Let Ps be the orthogonal projection onto (Ker S)l. . The commutation properties of' the operators UA, UB, Uc(A,B), PA , PB , and PAPB are investigated. These operators multiplied by some constants satisfy a set of' commutation, relations, which may be regarded as an extension of that satisfied by the standard basis of the Lie algebra .au(2, C) of' the special unitary group SU(2). It is shown that there exists a Lie algebra ro? associated with those operators and that, if' A and B are injective, then ro? gives a completely reducible representation of su(2, C) with the heighest weight of' each irreducible component being 1/2. Moreover, the "diagonalization" of' A+ B is given.
Journal
-
- Hokkaido University Preprint Series in Mathematics
-
Hokkaido University Preprint Series in Mathematics 121 2-25, 1991-08
Department of Mathematics, Hokkaido University
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390290699771786880
-
- NII Article ID
- 120006456435
-
- DOI
- 10.14943/83266
-
- HANDLE
- 2115/68868
-
- Text Lang
- en
-
- Article Type
- departmental bulletin paper
-
- Data Source
-
- JaLC
- IRDB
- CiNii Articles
-
- Abstract License Flag
- Allowed