Decay of correlations in suspension semi-flows of angle-multiplying maps

説明

We consider suspension semi-flows of angle-multiplying maps on the circle. Under a $C^r$generic condition on the ceiling function, we show that there exists an anisotropic Sobolev space¥cite{BT} contained in the $L^2$ space such that the Perron-Frobenius operator for the time-$t$-map act on it and that the essential spectral radius of that action is bounded by the square root of the inverse of the minimum expansion rate. This leads to a precise description on decay of correlations, which extends the result of M. Pollicott¥cite{Po}.

収録刊行物

キーワード

詳細情報 詳細情報について

  • CRID
    1390290699772067328
  • NII論文ID
    120006459456
  • DOI
    10.14943/83898
  • HANDLE
    2115/69556
  • 本文言語コード
    en
  • 資料種別
    departmental bulletin paper
  • データソース種別
    • JaLC
    • IRDB
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用可

問題の指摘

ページトップへ