Decay of correlations in suspension semi-flows of angle-multiplying maps
説明
We consider suspension semi-flows of angle-multiplying maps on the circle. Under a $C^r$generic condition on the ceiling function, we show that there exists an anisotropic Sobolev space¥cite{BT} contained in the $L^2$ space such that the Perron-Frobenius operator for the time-$t$-map act on it and that the essential spectral radius of that action is bounded by the square root of the inverse of the minimum expansion rate. This leads to a precise description on decay of correlations, which extends the result of M. Pollicott¥cite{Po}.
収録刊行物
-
- Hokkaido University Preprint Series in Mathematics
-
Hokkaido University Preprint Series in Mathematics 748 1-17, 2005
Department of Mathematics, Hokkaido University
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390290699772067328
-
- NII論文ID
- 120006459456
-
- DOI
- 10.14943/83898
-
- HANDLE
- 2115/69556
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- JaLC
- IRDB
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用可