Periodicity of non-central integral arrangements modulo positive integers

説明

An integral coefficient matrix determines an integral arrangement of hyperplanes n Rm. After modulo q reduction (q ∈ Z>0), the same matrix determines an arrangement q of “hyperplanes” in Zmq In the special case of central arrangements, amiya, Takemura and Terao [J. Algebraic Combin., to appear] showed that the cardinality f the complement of Aq in Zmq s a quasi-polynomial in q ∈ Z>0. Moreover, hey proved in the central case that the intersection lattice of Aq is periodic from ome q on. The present paper generalizes these results to the case of non-central rrangements. The paper also studies the arrangement ˆ B[0,a] of Athanasiadis [J.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1390290699772122368
  • NII論文ID
    120006459602
  • DOI
    10.14943/84053
  • HANDLE
    2115/69711
  • 本文言語コード
    en
  • 資料種別
    departmental bulletin paper
  • データソース種別
    • JaLC
    • IRDB
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用可

問題の指摘

ページトップへ