LOCAL SOLVABILITY AND LOSS OF SMOOTHNESS OF THE NAVIER-STOKES-MAXWELL EQUATIONS WITH LARGE INITIAL DATA

説明

Existence of local-in-time unique solution and loss of smoothness of full Magnet-Hydro-Dynamics system (MHD) is considered for periodic initial data. The result is proven using Fujita-Kato's method in l^1 based (for the Fourier coeffcients) functional spaces enabling us to easily estimate nonlinear terms in the system as well as solutions to Maxwells's equations. A loss of smoothness result is shown for the velocity and magnetic field. It comes from the damped-wave operator which does not have any smoothing effect.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1390290699772205440
  • NII論文ID
    120006459793
  • DOI
    10.14943/84252
  • HANDLE
    2115/69910
  • 本文言語コード
    en
  • 資料種別
    departmental bulletin paper
  • データソース種別
    • JaLC
    • IRDB
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用可

問題の指摘

ページトップへ