A mixed type identification problem related to a phase-field model with memory
この論文をさがす
説明
In this paper we consider an integro-differential system consisting of a parabolic and a hyperbolic equation related to phase transition models. The first equation is integro-differential and of hyperbolic type. It describes the evolution of the temperature and also accounts for memory effects through a memory kernel k via the Gurtin-Pipkin heat flux law. The latter equation, governing the evolution of the order parameter, is semilinear, parabolic and of the fourth order (in space). We prove a local in time existence result and a global uniqueness result for the identification problem consisting in recovering the memory kernel k appearing in the first equation.
収録刊行物
-
- Osaka Journal of Mathematics
-
Osaka Journal of Mathematics 44 (3), 579-613, 2007-09
Osaka University and Osaka City University, Departments of Mathematics
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390290699786510080
-
- NII論文ID
- 120005986768
-
- NII書誌ID
- AA00765910
-
- DOI
- 10.18910/3580
-
- HANDLE
- 2434/68599
- 11585/57466
- 11094/3580
-
- ISSN
- 00306126
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- JaLC
- IRDB
- CiNii Articles
- OpenAIRE