書誌事項
- タイトル別名
-
- Differential Geometry : Proceedings of the First Intenational Symposiumu on Differential Geometry, February 22-24, 2001 Josai University
この論文をさがす
説明
type:text
The Yamabe invariant [K], [S2] of a closed smooth manifold X is a naturaldifferential-topological invariant which arises from a variational problem for the totalscalar curvature of Riemannian metrics on X. The relative Yamabe invariant [ABl] ofa compact connected smooth manifold W with nonempty boundary is a natural relativeversion of the Yamabe invariant of X. Hence the relative Yamabe invariant has severalfundamental properties analogous to the corresponding ones for the classic Yamabe invariant.In particular, in respect of surgery on X and the interior of W, these two invariantshave quite similar properties. In this article, we give those properties.
Differential Geometry : Proceedings of the First Intenational Symposiumu on Differential Geometry, February 22-24, 2001 Josai University, edited by Qing-Ming Cheng. Dedicated to Professor Katsuhiro Shiohama on his sixtieth birthday.
identifier:JOS-KJ00000229300
収録刊行物
-
- Josai Mathematical Monographs
-
Josai Mathematical Monographs 3 105-113, 2001-02
城西大学理学研究科
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390290700502580096
-
- NII論文ID
- 120005520420
-
- NII書誌ID
- AA1141485X
-
- ISSN
- 13447777
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- JaLC
- IRDB
- CiNii Articles