Plane Detection and Segmentation in 3D Point Clouds Using a Multiscale Sliding Voxel Approach
-
- SANDOVAL GALVEZ Jaime Alberto
- AB.do Corp.
-
- UENISHI Kazuma
- Interdisciplinary Graduate School of Science and Technology, Shinshu University
-
- IWAKIRI Munetoshi
- Department of Computer Science, National Defense Academy of Japan
-
- TANAKA Kiyoshi
- Academic Assembly (Institute of Engineering), Shinshu University
この論文をさがす
説明
Plane detection is a core task in 3D point clouds processing with numerous applications such as registration, object recognition, intelligent robotics, and SLAM. However, RANSAC and other methods based on random sampling are negatively affected by the inliers ratio of the point cloud, and the sliding voxel method depends on the voxel size to ensure its precision. Therefore, in this paper, we propose a multi-scale sliding voxel plane detector that can detect and segment the most reliable planes at each scale efficiently.
収録刊行物
-
- 画像電子学会年次大会予稿集
-
画像電子学会年次大会予稿集 48 (0), 65-65, 2020
一般社団法人 画像電子学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390290769928147712
-
- NII論文ID
- 130008140701
-
- ISSN
- 24364398
- 24364371
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可