- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Bibliographic Information
- Other Title
-
- 医用画像セグメンテーションのための画像水増し法の検証
- イヨウ ガゾウ セグメンテーション ノ タメ ノ ガゾウ ミズマシ ホウ ノ ケンショウ
Search this article
Description
Semantic segmentation of medical images aims to associate a pixel with a label in a medical image without human interaction. The success of semantic segmentation using deep learning techniques is contingent on the availability of a large amount of imaging data with corresponding labels provided by experts. In contrast, a large amount of labeled medical image data is not available in many cases. In this study, we investigate an efficient data augmentation method using various filters. The experimental results showed that the combination between Gaussian and Median filters is adequate for semantic segmentation for bone images.
Journal
-
- 同志社大学ハリス理化学研究報告
-
同志社大学ハリス理化学研究報告 62 (4), 213-218, 2022-01-31
Harris Science Research Institute of Doshisha University
- Tweet
Details 詳細情報について
-
- CRID
- 1390291037032669568
-
- NII Article ID
- 120007187696
- 40022827013
-
- NII Book ID
- AA12716107
-
- NDL BIB ID
- 031991272
-
- ISSN
- 21895937
-
- Text Lang
- ja
-
- Article Type
- departmental bulletin paper
-
- Data Source
-
- JaLC
- IRDB
- NDL Search
- CiNii Articles
- KAKEN
- OpenAIRE
-
- Abstract License Flag
- Allowed