- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
-
- AOSHIMA Takehiro
- Graduate School of Engineering Science, Osaka University
-
- MATSUBARA Takashi
- Graduate School of Engineering Science, Osaka University
Search this article
Description
<p>The creation of images and other data is one of the ultimate goals of computer vision research. For this purpose, various deep learning methods have been proposed, such as variational autoencoders, adversarial networks, and diffusion models. These methods learn the distributions of photographs and illustrations and reproduce them. The generated image is determined using the coordinates provided in the latent space. Therefore, several studies have been conducted to manipulate these coordinates to edit the generated images. However, existing methods frequently provide unintended or low-quality editing results because the coordinate system in the latent space is not properly learned, among other reasons. In this study, we focus on the coordinate system in the representation space and introduce deep curvilinear editing. In particular, we propose a method for the representation vectors using representation space with a curvilinear coordinate system. The method was also combined with generative adversarial networks, whose results demonstrated that the proposed method enables the high-quality editing of generated images.</p>
Journal
-
- NIHON GAZO GAKKAISHI (Journal of the Imaging Society of Japan)
-
NIHON GAZO GAKKAISHI (Journal of the Imaging Society of Japan) 62 (6), 579-587, 2023-12-10
The Imaging Society of Japan