Time Series Analysis under Not Missing at Random
-
- Baba Yuki
- 九州大学大学院数理学府
-
- Hirose Kei
- 九州大学マス・フォア・インダストリ研究所
Bibliographic Information
- Other Title
-
- ランダムでない欠測を含む時系列モデリング
Description
<p>Time series data often include missing values, and statistical modeling that deals with missing values is needed. Typically, a state-space model is used to impute missing values. However, this approach implicitly assumes that the missing mechanism is missing at random; thus, the estimator may be biased when the missing mechanism is not missing at random. In this study, we construct and incorporate the missing mechanism to reduce the bias of the estimator. The model parameter is estimated by the Monte Carlo Expectation-Maximization (MCEM) algorithm. Monte Carlo simulation is conducted to investigate the effectiveness of our proposed procedure.</p>
Journal
-
- Journal of the Japan Statistical Society, Japanese Issue
-
Journal of the Japan Statistical Society, Japanese Issue 53 (2), 275-296, 2024-02-27
Japan Statistical Society
- Tweet
Details 詳細情報について
-
- CRID
- 1390299318848814336
-
- ISSN
- 21891478
- 03895602
-
- Text Lang
- ja
-
- Article Type
- journal article
-
- Data Source
-
- JaLC
- KAKEN
-
- Abstract License Flag
- Disallowed