- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
On the length spectrums of Riemann surfaces given by generalized Cantor sets
-
- Kinjo Erina
- Department of Mechanical Engineering, Ehime University
Search this article
Description
<p>For a generalized Cantor set E(ω) with respect to a sequence <img align="middle" src="./Graphics/abst-1.jpg"/>, we consider Riemann surface <img align="middle" src="./Graphics/abst-2.jpg"/> and metrics on Teichmüller space T(XE(ω)) of XE(ω). If E(ω) = <img align="middle" src="./Graphics/abst-3.jpg"/> (the middle one-third Cantor set), we find that on <img align="middle" src="./Graphics/abst-4.jpg"/>, Teichmüller metric dT defines the same topology as that of the length spectrum metric dL. Also, we can easily check that dT does not define the same topology as that of dL on T(XE(ω)) if sup qn = 1. On the other hand, it is not easy to judge whether the metrics define the same topology or not if inf qn = 0. In this paper, we show that the two metrics define different topologies on T(XE(ω)) for some <img align="middle" src="./Graphics/abst-5.jpg"/> such that inf qn = 0.</p>
Journal
-
- Kodai Mathematical Journal
-
Kodai Mathematical Journal 47 (1), 34-51, 2024-03-11
Institute of Science Tokyo, Department of Mathematics
- Tweet
Details 詳細情報について
-
- CRID
- 1390299440020851200
-
- ISSN
- 18815472
- 03865991
-
- Text Lang
- en
-
- Data Source
-
- JaLC
- Crossref
- OpenAIRE
-
- Abstract License Flag
- Disallowed