書誌事項
- タイトル別名
-
- Three-dimensional Simulation of a Solid Oxide Fuel Cell Based on Current Distribution In-situ Acquired with Segmented Electrodes and Surrogate Model Preparation with Machine Learning
説明
<p>The analysis of the three-dimensional current density, concentration, and temperature distribution in solid oxide fuel cell (SOFC) cells and stacks has conventionally required high computational cost. In this study, we measure the current distributions in a planar test cell with segmented electrodes, which are used to construct and verify a three-dimensional finite element (FE) model. A surrogate model is generated with machine learning using current densities for the cell voltages, gas concentrations, and temperatures as training data predicted from the FE model, which is expected to reduce the computational cost.</p>
収録刊行物
-
- 熱工学コンファレンス講演論文集
-
熱工学コンファレンス講演論文集 2023 (0), A131-, 2023
一般社団法人 日本機械学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390299926126406656
-
- ISSN
- 2424290X
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- Crossref
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可