Visual maps between coarsely convex spaces
この論文をさがす
説明
The class of coarsely convex spaces is a coarse geometric analogue of the class of nonpositively curved Riemannian manifolds. It includes Gromov hyperbolic spaces, CAT(0) spaces, proper injective metric spaces, and systolic complexes. It is well known that quasi-isometric embeddings of Gromov hyperbolic spaces induce topological embeddings of their boundaries. Dydak and Virk studied maps between Gromov hyperbolic spaces which induce continuous maps between their boundaries. In this paper, we generalize their work to maps between coarsely convex spaces.
収録刊行物
-
- Kobe Journal of Mathematics
-
Kobe Journal of Mathematics 40 7-45, 2023
理学研究科数学専攻
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390302172849379968
-
- NII書誌ID
- AA10523758
-
- HANDLE
- 20.500.14094/0100492107
-
- ISSN
- 02899051
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- IRDB
- KAKEN
-
- 抄録ライセンスフラグ
- 使用可