畳み込みニューラルネットワークを用いた2次元スカラー波動場におけるクラック決定解析
書誌事項
- タイトル別名
-
- CRACK DETERMINATION IN A 2-D SCALAR WAVE FIELD USING CONVOLUTIONAL NEURAL NETWORKS
この論文をさがす
説明
This paper considers the estimation of the location, angle, and length of a crack in a 2-D scalar wave field using convolutional neural networks (CNN). In a nondestructive evaluation especially for a crack determination, the analysis of scattered ultrasonic waves is important. In this paper, a CNN is trained using waveform data generated by the time domain boundary element method (TD-BEM) to construct a model for estimating the location, angle, and length of a crack. Inputting images generated using data obtained with two different measurement settings to the CNN, we carry out the determination of the crack. The experimental results confirm that the proposed method can predict the location, angle, and length of a crack with accuracy for unknown data.
収録刊行物
-
- 計算数理工学論文集
-
計算数理工学論文集 24 (0), 121-126, 2024-12-13
日本計算数理工学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390303932781669888
-
- ISSN
- 27593932
- 13485245
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
-
- 抄録ライセンスフラグ
- 使用可