書誌事項
- タイトル別名
-
- Real-time Inference of Ryukyuan Classical Music Using Deep Learning
- シンソウ ガクシュウ ニ ヨル リュウキュウ コテン オンガク ノ リアルタイム スイロン
この論文をさがす
説明
<p>The classical music “uta-sanshin” has been sung since the Ryukyu Kingdom period, and its skills commonly depend on folklore method by bush telegraph. Accordingly, there exist much sensibilities and esoteric expressions of the uta-sanshin expert in passing down the skill. Also, the decrease in number of successors accompanying aging and the difficulty in understanding the musical score are hindering the inheritance and the reconstruction of the music. In this paper, we apply the deep learning to Ryukyuan classical music and develop a system that identifies vocalism by real-time processing. The results of the evaluation, compared with the conventional method, show that the execution time is reduced to 98%, and the identification accuracy is improved by 6%.</p>
収録刊行物
-
- 電気学会論文誌C(電子・情報・システム部門誌)
-
電気学会論文誌C(電子・情報・システム部門誌) 139 (9), 1001-1007, 2019-09-01
一般社団法人 電気学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390564227298337408
-
- NII論文ID
- 130007700096
-
- NII書誌ID
- AN10065950
-
- ISSN
- 13488155
- 03854221
-
- NDL書誌ID
- 029972198
-
- 本文言語コード
- ja
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可