- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
One Action Press Forming of Helix Bevel Gear by Using Multi-Cylinder Press and Die Heating System
-
- Nakamura Katsuaki
- Kyushu Institute of technology
-
- Koresawa Hiroshi
- Kyushu Institute of technology
-
- Narahara Hiroyuki
- Kyushu Institute of technology
Search this article
Description
<p>In the case of a complex shaped helix bevel gear, the forging of complete gear tips is very difficult to achieve. In almost all cases, tooth profile is finished by cutting machine from simple shaped forged parts, therefore requiring considerable machining time and cost. However, there are many approaches to forging. Forging is mainly classified as hot and cold forging, and uses a single motion press. In the case of hot forging takeoff of products from die is difficult by the cooling shrinkage from die and accuracy of products is lower level than cold forging. In addition, in the case of cold forging, a complicated shape is difficult to achieve based on the lack of ductility of the materials. To realize a helix bevel gear using a single forging operation, we applied a tool heating system and three-axis forging press. The tool heating system is applied to prevent a temperature decrease in the material by contact between the tool and forging material during the forging process. Further, to optimize the forging direction and timing, we used a three-axis forging press. We confirmed good forging capability of this special forging process, as well as the high precision of the forged parts. Moreover, through the thermo-mechanical control of steel and the tool temperature, the forged parts showed good mechanical properties, such as high hardness.</p>
Journal
-
- International Journal of Automation Technology
-
International Journal of Automation Technology 12 (5), 767-774, 2018-09-05
Fuji Technology Press Ltd.