Adaptive Negotiation-rules Acquisition Methods in Decentralized AGV Transportation Systems by Reinforcement Learning with a State Space Filter
-
- Nagayoshi Masato
- Niigata College of Nursing
-
- Elderton Simon
- Niigata College of Nursing
-
- Sakakibara Kazutoshi
- Toyama Prefectural University
-
- Tamaki Hisashi
- Kobe University
説明
In this paper, we introduce an autonomous decentralized method for multiple Automated Guided Vehicles (AGVs). In our proposed system, each AGV as an agent computes its transportation route by referring to the static path information. route. Once potential collisions are detected, one of the two agents chosen by a negotiation rule modifies its route plan. The rules are improved by reinforcement learning with a state space filter. Then, the performance is confirmed with regard to the adaptive negotiation rules.
収録刊行物
-
- 人工生命とロボットに関する国際会議予稿集
-
人工生命とロボットに関する国際会議予稿集 22 346-349, 2017-01-19
株式会社ALife Robotics
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390564238097780864
-
- ISSN
- 21887829
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可