書誌事項
- タイトル別名
-
- Flaw Depth Identification from ECT Signal using Convolutional Neural Network
説明
<p>Eddy current testing (ECT) is a nondestructive inspection method for detecting cracks and defects in conductive materials such as thin heat transfer tubes of steam generator. ECT applies inverse problem analysis for crack shape estimation, but in many cases requires large CPU time and memory. In this study, an application of convolutional neural network (CNN), which is one of deep learning models, was proposed and showed the possibility of high-speed estimation of crack depth.</p>
収録刊行物
-
- M&M材料力学カンファレンス
-
M&M材料力学カンファレンス 2019 (0), OS0402-, 2019
一般社団法人 日本機械学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390566775136043392
-
- NII論文ID
- 130007846383
-
- ISSN
- 24242845
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可