IKEDA'S CONJECTURE ON THE PERIOD OF THE DUKE-IMAMOGLU-IKEDA LIFT
説明
Let k and n be positive even integers. For a primitive form f in S2k−n(SL2(Z)), let In(f) be the Duke-Imamo¯glu-Ikeda lift of f to Sk(Spn(Z)), and e f the cusp form in Kohnen’s plus subspace of weight k¡n/2+1/2 for Γ0(4) corresponding to f under the Shimura correspondence. We then express the ratio hIn(f), In(f)i h e f, e fi of the period of In(f) to that of e f in terms of special values of certain L-functions of f. This proves the conjecture proposed by Ikeda [Ike06] concerning the period of the Duke-Imamo¯glu-Ikeda lift.
収録刊行物
-
- Hokkaido University Preprint Series in Mathematics
-
Hokkaido University Preprint Series in Mathematics 954 1-67, 2010-02-23
Department of Mathematics, Hokkaido University
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390572174748847360
-
- NII論文ID
- 120006459648
-
- DOI
- 10.14943/84101
-
- HANDLE
- 2115/69761
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- JaLC
- IRDB
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用可