IKEDA'S CONJECTURE ON THE PERIOD OF THE DUKE-IMAMOGLU-IKEDA LIFT

説明

Let k and n be positive even integers. For a primitive form f in S2k−n(SL2(Z)), let In(f) be the Duke-Imamo¯glu-Ikeda lift of f to Sk(Spn(Z)), and e f the cusp form in Kohnen’s plus subspace of weight k¡n/2+1/2 for Γ0(4) corresponding to f under the Shimura correspondence. We then express the ratio hIn(f), In(f)i h e f, e fi of the period of In(f) to that of e f in terms of special values of certain L-functions of f. This proves the conjecture proposed by Ikeda [Ike06] concerning the period of the Duke-Imamo¯glu-Ikeda lift.

収録刊行物

キーワード

詳細情報 詳細情報について

  • CRID
    1390572174748847360
  • NII論文ID
    120006459648
  • DOI
    10.14943/84101
  • HANDLE
    2115/69761
  • 本文言語コード
    en
  • 資料種別
    departmental bulletin paper
  • データソース種別
    • JaLC
    • IRDB
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用可

問題の指摘

ページトップへ